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1.9 Velocity and Acceleration in Plane Polar Coordinates:

It is often convenient to employ polar coordinates r, 6 to express the position of a particle
moving in a plane. Vertically, the position of the particle can be written as the product of
the radial distance r by a unit radial vector e,:
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Example

A honeybee hones in on its hive in a spiral path in such a way that the radial
distance decreases at constant rate,r = b — ct, while the angular speed
increases at constant rate,0 = kt. Find the speed as a function of time
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We have 7 = —c and 6 = kt
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1.10.a Velocity and Acceleration in Cylinder Coordinates:
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1.10.b. Velocity and Acceleration in Spherical Coordinates:
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Example:

A wheel of radius b is placed in a gimbal mount and is made to rotate as follows. The
wheel spins with constant angular speed @, about its own axis, which in turn rotates with
constant angular speed @, about a vertical axis in such a way that the axis of the wheel
stays in a horizontal plane and the center of the wheel is motionless. Use spherical coor-
dinates to find the acceleration of any point on the rim of the wheel. In particular, find
the acceleration of the highest point on the wheel.

r=>b,0 = wtand ¢ = w,t "
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In general the acceleration can be defined as following :

a=(7—r¢®sin® 0 —r0®)e_+(rf+270 —rd®sin Ocosh)e,

+ (r¢sin 0 + 2@ sin 6 + 2r0 cos O)e,
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r=>0b,0 =wtand ¢ = w,t

=00 =w,,0=0,) =w,and $ =0
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In general the acceleration can be defined as following :

a =|(# —r¢®sin® 0 —r0®)e_H+\(r0 + 270 —rd® sin B cosf)e,

(r¢sin 0 + 27 sin O + 2r0¢ cos H)e o /

a=(0—bw,sin?6— b w,*)er + (0 + A bw,?sin Ocos O)e,
+(0+ 0 ¥2b w, w,cosb) e,

a = (bw,? sin’*0 — b w.* )er — (bw,?sin Ocos H)e,
+(2b w,; w,co0s0) e,

The point at the top has coordinate 8 = 0, so at that point

a=-bw;’e +2bw; w,e,
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Thanks for your attention
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